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Visual and tactile sensory processing both involve neural mechanisms 
that extract high-level geometric features of a stimulus, such as the 
orientation of an edge, by integrating information from many low-
level inputs1–5. Although geometric feature extraction is generally 
attributed to neural processing in the cerebral cortex6,7, there is grow-
ing evidence in the visual system that feature extraction begins very 
early in the processing pathway8, even at the level of first-order (that 
is, bipolar) neurons in the retina9. We found that feature extraction 
also begins very early in the tactile processing pathway, at the distal 
arborization of first-order tactile neurons.

First-order neurons in the tactile system have distal axons that 
branch in the skin and form many transduction sites, yielding com-
plex receptive fields with many highly sensitive zones10–18. The func-
tional consequences of this spatial arrangement are unknown. Our 
general hypothesis is that this arrangement constitutes a peripheral 
neural mechanism for signaling geometric features of touched objects. 
We specifically tested whether first-order tactile neurons signal infor-
mation about a canonical geometric feature, namely edge orientation4, 
and whether such edge orientation sensitivity relates to the spatial 
layout of a neuron’s transduction sites. We focused on first-order tac-
tile neurons innervating Meissner (fast-adapting type 1, FA-1) and 
Merkel (slow-adapting type 1, SA-1) end organs in the human fin-
gertips19 because they branch in the skin, have receptive fields with 
many highly sensitive zones17,18 and are critical for conveying detailed 
spatial information about touched objects20.

Previous observations that a neuron’s highly sensitive zones are 
non-uniformly distributed within its receptive field17,18 motivated 
two key predictions. First, we predicted that the intensity of a neuron’s 
response would signal edge orientation because its firing rate would 
increase with the degree of spatial coincidence between the neuron’s 
highly sensitive zones and local tissue deformations caused by an edge 
moving across the skin13,18. That is, for a given neuron, some edge 
orientations show more spatial coincidence than others, and there-
fore yield stronger responses. Second, we predicted that the temporal 
structure of a neuron’s response would signal the orientation of an 

edge moving across its receptive field. That is, the temporal structure 
of the evoked action potentials is defined by the sequential stimula-
tion of the neuron’s highly sensitive zones, which in turn depends on  
edge orientation. Our results confirmed both of these predictions.

RESULTS
We recorded action potentials from 26 FA-1 and 21 SA-1 neurons 
innervating the human fingertips. Isolated neurons were stimulated 
by repeatedly scanning tactile stimuli across their receptive field21 
at a speed (30 mm s−1) and contact force (0.4 N) typical for haptic 
exploration22. A subset of neurons (7 FA-1 and 7 SA-1) was stimulated 
at three additional speeds (32.5, 42.4 and 78.4 mm s−1). The stimulus 
pattern, wrapped around a rotating drum, consisted of various raised 
shapes, including lines with different orientations and three small dots 
used for generating a sensitivity map of the receptive field (Fig. 1a  
and Supplementary Fig. 1). The drum was advanced axially during 
the revolutions to incrementally pass the whole pattern across the 
receptive field, yielding a spatial event plot in which each tick mark 
represents the occurrence of an action potential plotted with respect 
to the position of the drum when it occurred21. Consistent with pre-
vious studies on analogous neurons in monkeys23, both FA-1 and 
SA-1 neurons produced a broadly isomorphic representation of the 
stimulus pattern, such that the spatial event plot resembled the relief 
of the stimulus pattern (Fig. 1a).

The core tenet of our hypothesis is that a neuron’s response to 
particular edge orientations relates to the spatial arrangement of its 
multiple transduction sites. We estimated the spatial layout of a neu-
ron’s transduction sites by generating a sensitivity map of its receptive 
field based on its instantaneous firing rate in response to the small 
dot stimuli as a function of drum position (Fig. 1b,c). As in previous 
studies using both scanning18 and punctate stimuli17, our neurons 
exhibited multiple non-uniformly distributed zones of high sensitivity 
(Fig. 1d) and most had elliptical, rather than circular, receptive fields 
(FA-1, 73%; SA-1, 81%; χ2 test of variance, P < 0.05, corrected for 47 
comparisons; median eccentricity = 1.9 and 1.8, respectively).
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A fundamental feature of first-order neurons in the tactile system is that their distal axon branches in the skin and forms many 
transduction sites, yielding complex receptive fields with many highly sensitive zones. We found that this arrangement constitutes 
a peripheral neural mechanism that allows individual neurons to signal geometric features of touched objects. Specifically, we 
observed that two types of first-order tactile neurons that densely innervate the glabrous skin of the human fingertips signaled 
edge orientation via both the intensity and the temporal structure of their responses. Moreover, we found that the spatial layout of 
a neuron’s highly sensitive zones predicted its sensitivity to particular edge orientations. We submit that peripheral neurons in the 
touch-processing pathway, as with peripheral neurons in the visual-processing pathway, perform feature extraction computations 
that are typically attributed to neurons in the cerebral cortex.
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Consistent with our predictions, a neuron’s response to an edge 
moving across its receptive field was often markedly multi-phasic 
and shaped by how an edge sequentially stimulated its highly sensi-
tive zones (Fig. 2). Accordingly, the structure of a neuron’s response 
appeared markedly affected by the orientation of the stimulating edge 
(Fig. 2d and Supplementary Fig. 2a,b). We formally investigated the 
link between the spatial layout of a neuron’s highly sensitive zones and 
the structure of its responses by constructing a model that convolved 
each neuron’s sensitivity map with the stimulus pattern. In essence, 
our model assumed that a neuron’s instantaneous firing rate reflects 
the linear superposition of the stimulus and the spatial layout of the 
neuron’s multiple transduction sites, as estimated from its sensitivity 
map. The model was markedly effective at predicting the observed 
responses (Fig. 2a,c,d). Correlating the predicted and observed firing-
rate profiles for the seven line stimuli at the 30-mm s−1 drum speed 
(n = 47 neurons) revealed that the model accounted for 83.1% of the 
observed variance (Fig. 2e). There was no significant difference in 
model fit for FA-1 (mean R2 = 82.3%) and SA-1 (84.0%) neurons (two-
sample two-tailed t test, t45 = 0.62, P = 0.5), nor was there a significant 

difference in model fit as a function of drum speed (n = 14 neurons; 
mean R2 = 83.7, 82.1, 82.2 and 82.0% at 30, 32.5, 42.4 and 78.4 mm s−1;  
one-way repeated-measures ANOVA, F3,36 = 1.3, P = 0.3).

Additional analyses confirmed that the model fit related to the 
detailed internal topography of a neuron’s receptive field (Fig. 2e). 
First, rotating the empirically determined receptive field by 180°, such 
that its overall shape and orientation was identical, but the topography 
of the highly sensitive zones relative to the stimuli was highly dis-
turbed, markedly reduced the quality of the predictions (one-sample 
two-tailed t test, t46 = 13.3, P < 10−6). Second, randomly reassigning a 
neuron’s responses to model predictions using another neuron’s sensi-
tivity map significantly reduced the quality of the fit (95% confidence 
interval (c.i.) of R2 = 0.50 – 0.56). Finally, alternative sensitivity maps 
with simpler internal topography all significantly reduced the quality 
of the predictions (all t46 > 13, P < 10−6).

Orientation signaling via intensity and temporal codes
Motivated by the outcome of the model, we explicitly tested our two 
predictions that first-order tactile neurons signal edge orientation via 
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Figure 1  Stimuli and sensitivity maps.  
(a) Top, spatial event plot from an exemplar 
neuron (SA-1: #9) where tick marks  
represent action potentials and whose height is  
proportional to the instantaneous firing rate18.  
Raised portions of the scanned stimulating  
surface are shown in gray. Yellow area indicates  
the small dot stimuli used to map receptive  
fields. Labels indicate the orientation of the  
lines used for detailed analysis. The 0° line  
stimulus is perpendicular to the rotation  
direction of the drum. Pairs of positive and  
negative line angles (that is, ±22.5°, ±45°,  
±67.5°) indicate complementary edge  
orientations. Middle and bottom, raw neural  
signal and calculated instantaneous firing rate  
from a single rotation of the stimulating  
drum. (b) Close-up of the spatial event plot in a  
focusing on the small dot stimuli. (c) Receptive field in b represented as a sensitivity map in which brighter colors indicate higher instantaneous firing 
rates. (d) Sensitivity maps from 12 neurons, each normalized to their own peak firing rate for the small dot stimuli (top, FA-1; bottom, SA-1).
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Figure 2  Observed and predicted neural 
responses. (a) Responses to a line stimulus 
(black bar) moving across a neuron’s receptive 
field (FA-1: #8). Black trace represents the 
average firing rate profile of 12 passes (gray 
traces) across the receptive field aligned to the 
rotational position of the stimulus. The green 
trace represents the output of the model.  
(b,c) Empirical and predicted spatial event  
plot for the neuron shown in a. (d) Firing rate 
profiles, model predictions and raster plots  
for four exemplar neurons (left, FA-1;  
right, SA-1) and three line orientations  
(−22.5°, 0°, +22.5°). (e) Green bar  
shows the correlation between the model 
prediction and the observed data for all  
line stimuli averaged across neurons when 
using the empirically determined sensitivity 
maps (error bars represent 1 s.e.m., n = 47). 
White error bar indicates model performance 
when randomly assigning observed responses 
and model predictions using the empirically 
determined receptive fields (95% c.i. of bootstrap; Online Methods). Black bars show the correlation when using alternative sensitivity maps (Online 
Methods): rotated (Rot), Gaussian (Gau) circular (c), Gaussian elliptical (e), uniform (Uni) circle (c), uniform ellipse (e).
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both the intensity and temporal profile of their responses. To examine 
signaling by intensity, we compared peak firing rates evoked by line 
stimuli with complementary orientations relative to the motion of the 
stimulating surface (that is, ±22.5°, ±45°, ±67.5°) for each neuron col-
lected at the 30-mm s−1 drum speed. A targeted comparison between 
complementary edge orientations is critical because it factors out a neu-
ron’s potential sensitivity to the effective speed with which a stimulus 
moves across the skin18,21. Edge orientation routinely had a significant 
effect on the peak firing rates of both FA-1 and SA-1 neurons, averag-
ing 38% and 34% of peak firing rate, respectively (two-sample two-
tailed t test, n = 24 repeated instances of edge stimuli (2 orientations, 
12 repeats per orientation), P < 0.05, corrected for 141 comparisons; 
Supplementary Fig. 2a–c). We also applied receiver-operating char-
acteristic (ROC) analysis to assess how well an ideal observer could 
discriminate complementary edges based on a neuron’s peak firing rate. 
Both FA-1 and SA-1 neurons readily discriminated complementary 
edge orientations (Fig. 3a and Supplementary Fig. 2d–f). Notably, we 
found that those edge orientation pairs that were most difficult to dis-
criminate according to the ROC analysis had more similar predicted 
peak firing rates according to our model than those pairs that were easi-
est to discriminate (one-sample two sided t test, t46 = 17.9, P < 10−6).

Another way to match the effective speed with which a stimulus 
moves across the skin is by changing the drum speed as a function of 
edge orientation. To that end, we stimulated a subset of neurons (n = 14)  
at four drum speeds chosen so that each of the seven line stimuli 
moved across the skin at an effective speed of 30 mm s−1. Despite 
their complexity, sensitivity maps were markedly robust across speeds  
(Fig. 3b). Cross-correlating sensitivity maps revealed a signifi-
cantly higher degree of similarity for the same neuron across speeds  
(R2 = 81%) than across neurons for the same speed (R2 = 47%, one- 
sample two-tailed t test, t13 = 10.3, P < 10−6; Fig. 3c). Firing rate 
profiles were also notably similar, showing only a marginal effect of 
stimulation speed (Fig. 3d). Using the speed-matched subset of these 
data (Fig. 3d,e), we calculated how well an ideal observer could clas-
sify the seven line stimuli on the basis of peak firing rate. For each 
neuron, we assessed how often the peak firing rate for an individual 
spike train (n = 12 per edge) was closest to the mean peak firing rate 

evoked by the same edge orientation as opposed to any of the other 
orientations. Consistent with the ROC analysis for complementary 
edge orientations, discrimination rates (mean and 95% c.i. = 61.2%, 
53.9–68.0%) were much better than expected by chance (1/7 ≈ 14%; 
Fig. 3f). Again, those edge orientations that were most difficult to 
discriminate had more similar predicted peak firing rates accord-
ing to our model than those edges that were easiest to discriminate  
(one-sample two-sided t test, t13 = 8.8, P < 10−6). Examining the 
assignment of incorrectly classified responses (that is, the confusion 
matrix) revealed a slight bias toward confusing complementary edges 
for more oblique edge orientations and nearest neighbors for more 
perpendicular edge orientations (Supplementary Fig. 3a).

To examine edge-orientation signaling by a neuron’s temporal 
response profile, we calculated the probability of correctly discrimi-
nating edge orientation profiles for complementary edge orientations. 
For each neuron, we cross-correlated every pair of firing rate profiles 
for the 30-mm s−1 drum speed, both within and across stimulating 
edges, and assessed how often the highest correlation for a particular 
spike train came from spike trains evoked by the same edge orientation 
as opposed to the complementary edge orientation. Notably, the spike 
trains of both FA-1 and SA-1 neurons were almost always correctly 
classified (mean and 95% c.i.: FA-1 = 91.7%, 87.2–93.2%; SA-1 = 91.6%, 
88.8–93.8%; chance = 50%). Indeed, 85% of neurons showed perfect 
discrimination for at least one pair of complementary edges (Fig. 3a). 
Robust discrimination was also evident across all seven edge orienta-
tions for that subset of neurons collected under speed-matched condi-
tions (mean and 95% c.i. = 90.6%, 82.2–95.2%, chance ≈ 14%; Fig. 3f). 
Again, those edge orientations that were most difficult to discriminate 
according to the firing rate profile were more correlated according to 
the model than those edge orientations that were easiest to discriminate  
(one-sample two-sided t test: complementary edges, t46 = 15.3,  
P < 10−6; speed matched, t13 = 7.0, P < 10−5). We found no clear trend 
when examining the confusion matrix (Supplementary Fig. 3b).

Effect of precise timing of action potentials
Our analysis revealed that the temporal structure of a neuron’s 
response provides substantial information about edge orientation. 
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Figure 3  Orientation discrimination and  
speed effect. (a) Cumulative distribution 
function representing the ability of an ideal  
observer to discriminate complementary  
line orientations on the basis of peak firing 
rates (dashed) and temporal profiles (solid)  
of FA-1 (red, n = 26) and SA-1 (blue,  
n = 21) neurons. The best discriminated  
line-orientation pair is shown. (b) Sensitivity 
maps for an exemplar SA-1 neuron at four  
different drum speeds. (c) Correlation between 
sensitivity maps for the same neurons  
across speed (S) and for the same speed  
across neurons (U). Lines indicate average  
correlations for single neurons (n = 14,  
red = neuron in b). (d) Raster plots and firing  
rate profile as a function of position for four  
line orientations and four speeds for the  
neuron shown in b. Asterisks indicate speed-
matched data. (e) Raster plots and firing rate  
profiles as a function of time for four line  
orientations moving at the same effective  
speed (asterisks in d) for the neuron shown  
in b. (f) Cumulative distribution function  
representing discrimination capacity across all line orientations on the basis of peak firing rate and firing rate profile acquired under speed-matched 
conditions (n = 14 neurons). Thin lines represent discrimination capacity for the 30-mm s−1 speed condition (n = 47).



©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�	 advance online publication  nature NEUROSCIENCE

a r t ic  l e s

However, it does not establish the degree to which such information 
relies on precise timing of the action potentials, a factor known to be 
important for the processing of sensory information24–26. We exam-
ined this issue by imposing various amounts of noise on the timing of 
the recorded action potentials and quantifying how this noise affected 
a neuron’s classification rate27,28. For each neuron, we convolved each 
spike train (n = 12 per edge) with Gaussian kernels of various widths 
(0.5, 1, 2, 4, 8, 16 and 32 ms) that increasingly attenuated the temporal 
structure of the response (Fig. 4a). For each kernel, we then correlated 
every pair of convolved spike trains, both within and across stimulat-
ing edges28,29, and assessed how often the highest average correlation 
for a particular spike train came from spike trains evoked by the same 
edge orientation (Supplementary Fig. 4).

Across the population of neurons and edge orientations at the  
30-mm s−1 drum speed, we found a significant effect of kernel width 
on classification error rate (F6,270 = 31.0, P < 10−6; Fig. 4b). On average, 
the 2-ms kernel yielded the lowest classification error rate for both FA-1  
and SA-1 neurons. We found no significant main effect of neuron 
type on the overall error rate (F1,45 = 0.01, P = 0.91). However, neuron 
type did interact with kernel width (F6,270 = 3.3, P = 0.004), suggesting 
that classification performance of FA-1 neurons benefited more from 
precise spike timing than that for SA-1 neurons. For both the FA-1 and 
SA-1 neurons, kernel width and edge orientation markedly interacted 
with the error rate (F36,1620 = 21.6, P < 10−6; Fig. 4c). Notably, with 
the 2-ms kernel, edge classification was similarly robust for all edge 
orientations. Narrower kernels yielded the lowest error rates for edges 
most perpendicular to the scanning direction, whereas wider kernels 
yielded the lowest error rates for more oblique edges that scanned the 
receptive field with lower effective speed. Similar results were obtained 
for those neurons collected under speed-matched conditions. Again, 
kernel width had a significant effect on edge classification (F6,72 = 13.1,  
P < 10−5), with the 2-ms kernel yielding the lowest average error 
rate (Fig. 4d). However, the narrower kernels did not show a sub-
stantial increase in error rate with more oblique edges (Fig. 4e),  
likely because they were moving at the same effective speed as the 

perpendicular (0°) edge at the 30-mm s−1 drum speed, leading to 
slightly more consistent responses (Supplementary Fig. 5).

Overall, the spatial structuring of action potentials was notably 
invariant as a function of drum speed (Supplementary Fig. 5), as 
would be expected if the structuring arose because of the spatial dis-
tribution of a neuron’s highly sensitive zones in the skin. We quan-
tified this similarity by correlating spike trains smoothed with the 
2-ms kernel with all other spike trains both across speed and edge 
orientation and found substantially stronger correlations between line 
stimuli of the same orientation across speeds than for line stimuli with 
different orientations for the same speed (Fig. 4f).

DISCUSSION
The central result of our study is our finding that human first-order 
tactile neurons robustly signaled edge orientation, a capability previ-
ously attributed to neurons in the somatosensory cortex1–3,30. Our 
results indicate that edge orientation discrimination arises because 
different edges cause different patterns of spatial and temporal coin-
cidence between a neuron’s many transduction sites and the mov-
ing stimulus. Although we focused on straight edges, this peripheral 
mechanism may also permit first-order human tactile neurons to  
signal information about higher order aspects of a touched object, 
such as the curvature of an edge2 and its motion direction30–32.

Current models of discriminative touch do not consider the com-
putational consequences of a neuron’s branching and subsequent 
connection to multiple transduction sites. This is likely because such 
models are based on neurophysiological studies in monkeys, which 
have emphasized that most first-order tactile neurons have simple 
receptive fields with one central zone of maximal sensitivity and a 
smooth decrease in sensitivity in all directions21,33–36. We believe that 
models that incorporate receptive fields with multiple highly sensitive 
zones are critical for understanding human touch. For example, such 
receptive fields provide a straightforward explanation for the psycho-
physical phenomenon of tactile hyper-acuity, in which people dem-
onstrate tactile resolutions substantially better than predicted by the 
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Figure 4  Timing of action potentials. (a) Top, sensitivity map,  
raster plot and firing rare profile for an exemplar neuron (FA-1: #32). 
Bottom, traces show probability density for the occurrence of action 
potentials as a function of time for various kernel widths. (b) Mean 
classification error rate (±1 s.e.m.) as a function of kernel-width averaged 
across line orientations and neurons for the 30-mm s−1 drum speed. 
Horizontal bars indicate best kernel width (mean ± 1 s.d.) for FA-1  
(n = 26) and SA-1 (n = 21) neurons. (c) Mean classification error rate  
as a function of edge orientation and kernel averaged across all 47 
neurons for the 30-mm s−1 drum speed. (d) Data are presented as in b for 
the speed-matched condition collapsed across neuron types (n = 14).  
(e) Data are presented as in c under speed-matched conditions.  
(f) Each colored line represents the average correlation (±1 s.e.m.) 
between probability density profiles (2-ms kernel) for an edge  
orientation at that speed and the same edge orientation at the speed 
indicated on the horizontal axis. The gray area represents the 95%  
c.i. of correlations for a given edge orientation and all other edge 
orientations at each of the four speeds. (g) Four toy neurons  
(colors) with overlapping receptive and many highly sensitive zones  
(true overlap in fingertips: FA-1 ≈ 20, SA-1 ≈ 16). Lines indicate two 
differently oriented stimuli. (h) For each neuron in g, a moving edge will 
sequentially stimulate highly sensitive zones and edge orientation will 
affect the sequence of evoked action potentials because different neurons 
have different distributions of highly sensitive zones. At a given instance, 
one edge will simultaneously stimulate one set of neurons and the other 
edge will simultaneously stimulate another set of neurons (yellow dots  
in g and yellow rectangle in h). (i) Each edge will cause temporally coincident 
inputs at different sets of higher order (for example, cuneate) neurons.
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spacing between receptive field centers35,37. Although a neuron with 
multiple highly sensitive zones can still only signal that the stimulus is 
located somewhere in its receptive field, a population of such neurons 
with overlapping receptive fields provides higher resolution. That is, 
for a given density of neurons, the theoretical limit of tactile resolu-
tion is defined by the spacing between their interdigitating highly 
sensitive zones, which is an order of magnitude less than the spacing 
between their receptive field centers.

Our model assumes that a neuron’s response reflects the linear 
superposition of the stimulus and the location of the neuron’s highly 
sensitive zones. Such superposition could arise if receptor potentials, 
generated at the transduction sites, traveled electronically to a com-
mon spike generation site in the parent axon13,18. Despite its simplic-
ity, our model did well at predicting the magnitude and timing of 
neural responses to the various edge stimuli, although it tended to 
underestimate the depth of firing rate modulations in a response. 
One possible reason for the imperfection is that the model did not 
account for the complicated mechanical properties of the skin35, 
which itself can yield complex effects analogous to surround inhibi-
tion38. Specifically, our model could not capture the fact that our 
edges and small dot stimuli likely generate different distributions of 
stresses and strains at the transducer sites23. Another possible expla-
nation for the imperfection is complex nonlinear interactions in the 
neuron’s terminal arborization13,34,39,40. In contrast with electrotonic 
conduction to a common spike generation site in the parent axon, 
action potentials may be initiated at more distal branch points that are 
shared by more than one transduction site or even at the terminals of 
the axonal branches. Under such circumstances, the signals may not 
combine linearly because of the absolute refractoriness of the spike 
initiation site, collisions between orthodromically and antidromically 
propagating action potentials, and the recovery cycle at the transduc-
tion site after antidromic invasion of an action potential. Notably, skin 
mechanics along with nonlinear processing in the terminal arbori-
zation might enable first-order tactile neurons to perform a host of 
complex computations, akin to those that occur via integration across 
neurons and dendritic trees in the CNS41.

We found that individual neurons signaled edge orientation via both 
the intensity and the temporal structure of their responses. An indi-
vidual neuron often responded with higher peak firing rates for some 
edge orientations than others, likely because of a higher degree of spa-
tial coincidence with its highly sensitive zones. Given that the spatial 
layout of highly sensitive zones differs across neurons with overlap-
ping receptive fields, the population of neurons could provide robust 
information about edge orientation. That is, a given orientation would 
cause some neurons to fire more intensely than others, and another 
orientation would preferentially recruit a different set of neurons. Such 
intensity-based population codes can indeed signal information about 
various sensory inputs and motor outputs42,43, including tactile edge 
orientation in the monkey somatosensory cortex1,3,30,32 and fingertip 
force direction in human first-order tactile neurons44.

An individual neuron also responded to different edge orienta-
tions with different sequences of precisely timed action potentials, 
likely because different edges yielded different temporal patterns of 
spatial coincidence with one or more of the neurons’ highly sensitive 
zones. At the population level, the temporal coincidence of action 
potentials across neurons with overlapping receptive fields could 
signal information about edge orientation. That is, a given orien-
tation would yield epochs of synchrony in one set of neurons and 
another orientation would yield epochs of synchrony in a different set  
(Fig. 4g–i). There is indeed increasing appreciation that population 
codes based on synchrony at fine timescales can carry rich information 

about sensory stimuli in various modalities45,46, including touch19,47. 
Synchrony codes can be effectively decoded via coincidence detection 
mechanisms in which higher order neurons preferentially respond 
when receiving many synchronous inputs48. Notably, our estimated 
precision in the timing (~2 ms) lies in the window required for effec-
tive coincidence detection supported by heterosynaptic mechanisms 
in somatosensory pathways49. By virtue of substantial neural conver-
gence and divergence in the ascending somatosensory pathways19, 
coincidence detection mechanisms can provide moment-by-moment 
information about edge orientation, location and extent while fac-
toring out potential confounds such as scanning speed. Indeed, we 
found that the spatial structuring of action potentials was markedly 
invariant with changes in scanning speed (Supplementary Fig. 5). 
Given the invariance of spatial structuring, the coincidence detection 
mechanism provides a straightforward explanation for psychophysical 
findings that tactile spatial acuity is maintained over a wide range of 
scanning speeds22.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Study participants and general procedure. 26 females and 18 males (19–38 years  
of age) participated after providing written informed consent in accordance  
with the Declaration of Helsinki. The Umeå University ethics committee approved 
the study. The general experimental methodology, procedure and apparatus  
have been described previously18,44. Action potentials from single first-order 
tactile neurons terminating in the glabrous skin of the index, long or ring finger 
were recorded with tungsten electrodes50 inserted into the right median nerve 
at the level of the upper arm or wrist. Isolated neurons were classified as FA-1, 
SA-1, fast-adapting type 2 and slow-adapting type 2, according to previously 
described criteria19.

Stimulus. An embossed pattern mounted on a rotating drum repeatedly stimulated 
each isolated neuron’s (26 FA-1 and 21 SA-1) receptive field along the proximal- 
distal axis of the finger (Fig. 1a and Supplementary Fig. 1). The embossed  
pattern was produced via a standard photo-etching technique using a photosensi-
tive nylon polymer (Toyobo EF 70 GB, Toyobo). All the elements were 0.5 mm 
high. Line widths were 0.5 mm at the top and 0.8 mm at the base. The embossed 
dots were essentially truncated cones with a 0.4-mm diameter flat top and a 
base diameter of 0.7 mm. All of the elements were spaced at least 8 mm apart to 
ensure minimal interactions between elements18. A custom-built robotic device 
controlled the rotation and translation of the drum as well as the contact force 
between the drum and the receptor-bearing fingertip. To stabilize the fingers, we 
glued the nails to plastic holders firmly attached to a table that also supported the 
right arm and the robot. The stimulus pattern, wrapped around the drum, was 
repeatedly scanned across the neuron’s receptive field at a speed of 30 mm s−1.  
A subset of neurons (7 FA-1 and 7 SA-1) was stimulated at three additional speeds: 
32.5, 42.4 and 78.4 mm s−1. The order of presentation of all speed conditions was 
randomized. These speeds were chosen so that we could acquire responses where 
each oriented line stimulus (that is, edge orientation) moved across the skin at an 
effective speed of 30 mm s−1. This ‘speed-matched’ data set combined responses 
for the 0° line stimulus (that is, perpendicular to the scanning direction) at a drum 
speed of 30 mm s−1, with the ±22.5° line stimuli at a drum speed of 32.5 mm s−1  
(= 30/cosine (22.5°)), the ±45° line stimuli at a drum speed of 42.4-mm s−1 and the 
±67.5° line stimuli at a drum speed of 78.4 mm s−1 (Fig. 3d and Supplementary 
Fig. 5). The drum was advanced 0.4 mm per revolution along its axis of rota-
tion, causing the whole pattern to incrementally pass across the receptive field21. 
The instantaneous rotational position of the drum was monitored via an optical 
shaft encoder (AC36, Hengstler GmbH), which provided position resolution of 
3 µm in the scanning direction. The contact force, perpendicular to the skin, 
was servo-controlled such that it was equal to ~0.4 N for those parts of the drum 
with no embossed stimuli.

Data analysis and statistics. We analyzed where action potentials occurred rela-
tive to the various items on the drum. This relationship was visualized using a 
two-dimensional spatial event plot by laying out the impulse sequences evoked 
on successive rotations as parallel rows of ticks where each row corresponded to 
a single rotation of the drum21 (Fig. 1a). The horizontal and vertical coordinates 
of each action potential were determined using the rotational and axial position 
of the drum, respectively. Sensitivity maps of each receptive field were based 
on responses to the small dot stimuli. The axial spatial resolution of the map 
was 0.2 mm, although the drum was advanced 0.4 mm in the axial direction 
per revolution because the small dots were offset axially by 0.2 mm. The third 
small dot provided independent verification that our sensitivity map estimate was 
reproducible (average R2 between sensitivity maps > 0.95). As a general measure 
of receptive field eccentricity, we applied principal components analysis to the 
two-dimensional spatial distribution of action potentials.

All analyses of how well a neuron’s response signaled information about edge 
orientation were based on 12 consecutive responses evoked by each of the seven 
line stimuli. For paired comparisons of complementary edge orientations based 
on peak firing rate, we calculated the area under the ROC curve as a measure 
of discriminability. Complementary line stimuli (that is, ±22.5°, ±45°, ±67.5°) 
were defined relative to the scanning direction as these edge orientations moved 
with the same effective speed relative to the skin. For neurons collected under 

speed-matched conditions, we used a different approach to make comparisons 
across all seven edge orientations. That is, we quantified how well the intensity of 
a neuron’s response signaled edge orientation by calculating how frequently the 
peak firing rate evoked by each repetition of a particular line stimulus was closer 
to the average peak firing rate evoked by the same line stimulus than to any of the 
other six line stimuli. We also quantified how well a neuron’s firing rate profile 
signaled edge orientation by calculating the probability of correctly classifying an 
observed profile to the edge orientation that evoked it. In this analysis, we cross-
correlated every pair of firing rate profiles both within and across line stimuli. 
For each profile, we then averaged the correlations as a function of line stimulus 
and asked how often the highest average correlation resulted from the same line 
stimulus as opposed to either the complementary line stimulus (for comparisons 
at the standard 30-mm s−1 drum speed) or to any of the other six line stimuli (for 
comparisons under speed-matched conditions).

To understand the degree to which correct classification based on the tem-
poral structure of the response relied on the precise timing of action potentials, 
we used a correlation-based measure of spike timing reliability that provided 
an estimate of the similarity between pairs of individual spike trains28,29. After 
extracting spike times, we generated smoothed traces by convolving each of the 
extracted spike trains with a Gaussian function of fixed width27,28. This procedure 
replaced each spike by a standard waveform of known time span. We used seven 
Gaussian kernels of varying width (0.5, 1, 2, 4, 8, 16, 32 ms) and performed pair-
wise cross-correlations both in and across line stimuli. For each of these filtered 
representations, we then assessed how often the highest average correlation for a 
particular spike train came from spike trains evoked by the same edge orientation 
or by any of the other six edges. For a narrow kernel, spike timing can yield high 
reliability values only if the spike jitter is similar or smaller than the kernel width; 
a broad kernel decreases the influence of individual spike jitter (on a timescale 
below the kernel width) and the occurrence of additional and missing action 
potentials dominate the value of reliability27,28. The effect of orientation, kernel 
and neuron type on classification rate were assessed with a three-way mixed-
design ANOVA, with orientation and kernel as within-group effects and neuron 
type as a between-group effect.

Data were Fisher or logit transformed when performing parametric statistics 
on correlation coefficients and proportions, respectively. In all cases, we defined a 
statistically significant outcome if P < 0.05. Where indicated, statistical tests were 
corrected for multiple comparisons using the Holm-Bonferroni method.

Model of neural responses. We constructed a simple quantitative model, with no 
free parameters, that predicted a neuron’s time-varying response by convolving 
its empirically determined sensitivity map with the stimulus pattern. As such, 
the model assumed that a neuron’s instantaneous firing rate reflected the linear 
superposition of the sensitivity map and the stimulus pattern. We quantified 
model performance by cross-correlating the predicted firing rate profiles and 
the average observed firing rate profiles for all seven line stimuli. We performed 
several control analyses using predictions based on different representations of 
each neuron’s sensitivity map. This included (1) a circular receptive field matched 
for area with maximal sensitivity at its center and dropping off with a Gaussian 
profile35, (2) an elliptical receptive field matched for area and orientation (from 
the principal components analysis) with maximal sensitivity at its center and 
dropping off with a Gaussian profile35, (3) a circular receptive field matched for 
area with uniform sensitivity, (4) an elliptical receptive field matched for area and 
orientation with uniform sensitivity17, and (5) the empirically determined recep-
tive field rotated by 180° relative to the direction of movement. We performed 
a bootstrap analysis whereby we randomly assigned each neuron’s response to 
the seven line stimuli to model predictions using any neuron’s sensitivity map. 
We then calculated the average correlation between the predicted and observed 
responses. This procedure was repeated 10,000 times to estimate the correlations 
that the model would produce by chance given the observed sensitivity maps.

A Supplementary Methods Checklist is available.
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