<div dir="ltr">Hi everyone, <div><br></div><div>Just a reminder about the seminar tomorrow. </div><div><br></div><div>Also, CTN graduate students are invited to lunch with the speaker. Please meet in PAS 2464 at 11:30. Please contact Eric Hunsberger (<a href="mailto:erichuns@gmail.com">erichuns@gmail.com</a>) with any questions about lunch. </div><div><br></div><div>Regards, </div><div>Bryan </div><div><br><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Sep 12, 2017 at 11:48 PM, Bryan Tripp <span dir="ltr"><<a href="mailto:bptripp@gmail.com" target="_blank">bptripp@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi everyone, <div><br></div><div>Please join us for the first CTN seminar of the season, with Professor Blake Richards. The title and abstract follow. </div><div><br></div><div>Regards, </div><div>Bryan</div><div><br></div><div><div>Title: Deep learning with pyramidal neurons</div><div><br></div><div>Abstract:</div><div>Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear how deep learning could occur in the real brain, due to the difficulty of performing credit assignment without backpropagation. Here, we show that deep learning can be achieved in a biologically feasible simulation by moving away from point neuron models and towards multi-compartment neurons. Like neocortical pyramidal neurons, neurons in our model receive feedforward sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, the neurons in different layers of the network can coordinate local synaptic weight updates to achieve global optimization. As a result, the network can take advantage of multilayer architectures---the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments for feedforward and feedback information, which may help to explain the dendritic morphology of neocortical pyramidal neurons.</div></div><div><br></div></div>
</blockquote></div><br></div></div></div>