

Genetics on the Risk & Prognosis of **Prostate Cancer**

Justin Lorentz, MSc, CGC

Genetic Counsellor

Male Oncology Research and Education (MORE) Lead

Sunnybrook Odette Cancer Centre

November 23, 2021

Hereditary Cancer vs Not Hereditary Cancer

10-15% Hereditary

5-15% Familial

70-80% ("SHIT HAPPENS"

Genetic Testing: Two Types

Blood or Saliva Sample Germline Testing

- Gene mutation present = hereditary cancer
- Gene mutation absent = sporadic/familial cancer

Cancer Tissue Tissue Testing/Somatic Testing

Gene mutation always present

Group of cells with mutations 1 and 3

3 and 3

https://www.precisionmed.ch/en/what-is-cancer/

FDR - FIRST DEGINES RELATIVE SAR- SECONDEREE

PRIATIVE RISK

Risk Group

Affected FDRs diagnosed age >65 y Affected FDRs diagnosed age <65 y One affected SDR diagnosed at any age One affected FDR diagnosed at any age Father with prostate cancer diagnosed at any age Two or more affected FDRs diagnosed at any age Brother with prostate cancer diagnosed at any age 3.4 2.4 2.6 22

LE. JOHNS and R.S. HOULSTON prostate cancer risk A systematic review and meta-analysis of familial

Accepted for publication 14 February 2003 Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, UK

followed for a median of 32 years and 123,382 same-sex DZ twins Prospective study of 80,309 MZ

HHS Public Access

Author manuscript

JAMA. Author manuscript, available in PMC 2017 July 05

Published in final edited form as: JAMA, 2016 January 05; 315(1): 68–76, doi:10.1001/jama.2015.17703

Familial Risk and Heritability of Cancer Among Twins in Nordic

Czene, PhD. David J. Havelick, ALM. Thomas Scheike, PhD. Rebecca E. Graff, ScD. Klaus Hans-Olov Adami, MD, PhD, Jaakko Kaprio, MD, and for the Nordic Twin Study of Cancer MD, PhD. Niels V. Holm, MD, PhD, Kauko Heikkilä, PhLic. Eero Pukkala, PhD, Axel Skytthe Kraft, PhD, Giovanni Parmigiani, PhD, Kaare Christensen, MD, PhD, Markku Koskenvuo, Nuttall, BA, Ingunn Brandt, MSc, Kathryn L. Penney, ScD, Mikael Hartman, MD, PhD, Peter Holst, PhD, Sören Möller, PhD, Robert H. Unger, BS, Christina McIntosh, SM. Elizabeth Lorelei A. Mucci, ScD, MPH, Jacob B. Hjelmborg, PhD, Jennifer R. Harris, PhD, Kamila

1				
	< ≺	< <	< < <	< < < < <

Mismatch repair

deficiency

Frameshift mutations

Mismatch repair deficiency

Frameshift mutations

immunotherapy

Absence of

W

Presence of anti-PD-1

CCR Reviews

PD-L1/PD-1 interaction blocks T-cell activation

PD-L1/PD-1 interaction blocked by antibody, freeing T cell to kill tumor cell

T-cell

2016 American Association for Cancer Research

AAGR

T-cell anergy MANA/MHC

PD-L1

MANA/

PD-L1 Anti-PD-1 antibody

PD-1

TCR

PD-1

Tumor cell

Protein with mutation-associated neoantigen (MANA)

Protein with mutation-associated neoantigen (MANA)

Tumor cell

